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Abstract 

A system S '  (rocket) starts from rest in an inertial system S, and after a series of acceler- 
ated, uniform and decelerated motions, comes back to rest at its initial position in S. An 
exact calculation is carried out, from the standpoint of S, of the time intervals for the 
arrivals at S of light signals sent back by S' .  From the standpoint of S ' ,  S has made a 
round trip after undergoing a series of free falls in gravitational fields and coasting 
motions. An exact calculation is carried out for the 'proper time' intervals in S from the 
standpoint of S ' .  It is shown that there is exact agreement between S and S '  in their 
reckonings of the total time intervals for the two frames, namely, both S and S '  agree 
quantitatively, to them, the time interval is longer for S than for S' .  

The accelerated motion of S '  relative to S explicitly used in the treatment of the problem 
in the present work is that under time-independent field and subject to the condition of 
local Lorentz contraction and dilation; the resulting motion turns out to be that obtained 
earlier by Moiler on entirely different considerations. The result of the present treatment 
is, however, more general than this particular motion seems to imply, since by an arbitrary 
coordinate transformation, it can be made to include an infinite number of accelerated 
frames including time-dependent fields, all within the framework of fiat space-time. 
General remarks are given for the clock problem in the general theory of relativity in the 
sense of Einstein's curved space. 

1. The Clock Paradox 

The question concerned is the following: Imagine a pair of clocks, one of  
which remains at rest in an inertial frame, and the other sets out on a trip 
(on a rocket, say), and after a time returns to rest in the inertial frame. Will 
the travelling clock be slower than the one at home ? Will they both agree 
exactly by how much one is slower than the other ? 

This problem is sixty years old. In a paper in 1911, Einstein (1911) gave a 
simple theory in which (1) he employed the Doppler effect formula of the 
special theory of relativity and obtained the effect of  uniform acceleration 
of a reference frame on the Doppler shift, and (2) he introduced the equi- 
valence principle for the acceleration of  a frame and a gravitational field. 
Einstein concluded that a clock that has travelled, say in a circular path, 
will 'lose time', because the rate of the clock is slower in the accelerated 
motion. 
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That a returned clock should have lost time compared with the one at 
home is so strange a conclusion that Einstein specifically wrote an article 
(Einstein, 1918) in 1918, in the form of a dialogue between a critic and 
himself, to show (1) how the trip will be viewed from the standpoints of both 
frames, (2) how the reciprocal symmetry (in the sense of the special theory 
of relativity) will be destroyed in this case by the accelerated motion of the 
rocket, and that both frames will agree that the returned one will be slow, 
and (3) that this is due to the loss of time, or the 'slowing down of the clock', 
of the rocket during the accelerated portion of the rocket's trip when it 
turns back. 

For definiteness, let us pose the following situation. From the standpoint 
of the inertial system S, the rocket (or the travelling twin) S'  goes through 
the following sequence of events: 

B S' C 

s (  �9 
F E 

(1.1) 

,4-1t: S' starts off, with acceleration a (in the positive x direction), 
reaching the velocity v at B. 

B-C: S' shuts off its engine and moves with a uniform velocity v relative 
to S. 

C-D: S' starts its engine and decelerates, reducing its velocity relative 
to S to zero. 

D-E: S' keeps its engine and starts accelerating toward S, reaching the 
velocity - v  at E. 

E-F: S' shuts off its engine and moves with constant velocity (-v) 
toward S. 

F-A: S' starts its braking engine, and moves with acceleration -a ,  
coming to rest at A. 

From the standpoint of the rocket S'  who regards itself as at rest, S will go 
through the following events: 

E' F' 

C' S B' 

(1.2) 

A'-B':  S starts 'falling' in a (universal) gravitation field - g  (in the 
negative x direction), attaining a velocity -v  (relative to S') at B'. 

B ' -C ' :  The gravitational field is removed, and S keeps on moving with 
the (constant) velocity -v. 
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C'-D': A (universal) gravitational field g in the positive x-direction is 
turned on. S comes to stop (relative to S') at D'. 

D'-E': The same field g continues to act, and S 'falls' from D' to E', 
attaining the velocity v (relative to S'). 

E'-F': The field g is removed and S moves with the constant velocity v. 

F'-A': A gravitational field - g  is turned on, and S is brought to rest 
at A'. 

During A'-B', C'-D', D'-E' and F'-A', S' itself is in the same universal 
gravitational field as S, but S' is held fixed by some external agency. 

During the uniform relative motion parts B'-C', E'-F', S will say that the 
clock of S' is slow according to the time dilatation relation. If A'r s, is the 
proper time interval recorded by S'  for each of these parts, and ATs is the 
time interval recorded by synchronised clocks attached to the frame S, then 

2Ars, (1.3) 
2dTs = X/(1 - f12) 

But with equal right, S' will say that the clock of S is slow compared with 
that of S', and i fdrs  is the (proper) time interval recorded by S (for each of 
the uniform relative motion parts) and ATs, the time interval recorded by 
synchronised clocks attached to the frame S', then 

2dTs, - 2d'rs 
~/(1  - f12) (1.4)  

Einstein pointed out, however, that during the 'turning around' parts 
C'-D', D'-E' in (1.2), S is at a higher gravitational potential than S', and 
the clock of Sis faster than that orS' .  The clock in Swill during C'-D" and 
D'-E' 'gain' time and more than compensate the 'loss' as given by (1.4). If 
the time intervals during C'-D', D'-E' are very short compared with those 
for the uniform motion parts, the 'gain' during C'-D', D'-E' by the clock 
of S will be such as to bring the total time A T recorded by S (for the trip 
B'-C', C'-D', D'-E', E'-F') to be longer than that AT' recorded by S', in 
accordance with (1.3), i.e., 

AT' 
AT= .~/(1 - f12) (1.5) 

The above statement of Einstein has been expressed in explicit form by 
Tolman (1934). Let us view the trip from the standpoint of S' as in (1.2). 
Let "caB, 7~c, "rcoE, "cEr (= "C,c), ~'ra (= "tAB) be the proper time intervals as 
recorded by S, and let t13c, tcDr., tEp (= tBc), tea (= tan) be the time intervals 
as recorded by synchronised clocks at various points in (1.2) attached to 
S'.I" Then, by (1.4), 

"rBc (= "rEp) = ~/(1 -- f12) tnc (= ~/(1 - f12) tEv) (1.6) 

~" We shall, without causing confusion, drop the prime for B' ,  C',  etc. in the subscripts 
for the ~-'s and t's. 
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Let the average distance between S and S'  during the turning around 
portion C ' - D ' - E '  be approximately taken to be x -= VtBC. Since v = gtco, 
the Doppler effect separation gives 

= tcDB + 2fl 2 tRc (1.7a) 

The total time for the whole trip is, for S, from (1.6) and (1.7a), 

"c = "CaB + 2rBc + "CcoE + "rrA 

= 2[~(1 -/32) +/32] tB c + 2taB + tCDB 

= 2(1 + �89 + ' "  ") tBC + 2"CAB + tCOE (1.8) 

If  we make the time intervals "CaB, TcDE very short compared with "CBc and 
tBc, then (1.8) becomes 

1 
"C~ ~(1 -/32) x time for the trip recorded in S'  (1.9) 

This is in approximate agreement with (1.3). It is important to note that the 
sign in (1.9) arises not so much because of the neglect of ran and tcoE in 

(1.8) as because of the approximations made in obtaining (1.7). 
In 1956, Dingle (1956) in a series of articles renewed the question of 

whether the returned twin from a rocket trip is younger than his brother 
who has stayed home. He believed that there should be no difference in 
their aging, that all earlier conclusions, including Einstein's, are erroneous. 
His questioning of these earlier works by many physicists has led to a great 
flux of discussions. Most authors (Arzelies, 1966) maintain the conclusion 
of Einstein. In most cases, the arguments amount to the simple statement 
that since the rocket S '  has undergone accelerated and decelerated motions, 
it is not on equal footing with S which is an inertial system, and hence the 
reciprocal symmetry in the sense of the special theory of relativity has been 
removed. This part of the argument is of course correct. But then, because 
of attempts to simplify the problem for the non-specialist, the following 
argument is usually put forward: One can make the time intervals for the 
accelerated and decelerated parts very short compared with the time 
intervals for the uniform relative motion parts [see (1.1) or (1.2)] and in the 
limit negligible. Then, since only S is a 'preferred' (in the sense that it is an 
inertial) frame, one must only employ the relation (1.3). This part of the 
argument is unfortunately misleading. We have seen in the preceding section 
from the approximate treatment by Tolman that it is precisely the acceler- 
ation (or, an equivalent gravitation field) during the 'turning around' of the 
rocket that 'slows down its clock' (relative to the inertial frame S), and that 
one obtains the result (1.9) in an approximation only, which is not exactly 
the relation (1.3). The point that seems to have been forgotten in many 
'elementary' discussions of the clock paradox is that while the 'compen- 
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sations' in (1.8) and (1.9) must come from the accelerated motions, the 
correct result [(3.20) and (3.22) in the following] should really be independent 
of the strength of the accelerating and decelerating field which determine 
the length of time for these accelerated and decelerated parts. The undue 
prominence given the uniform relative motion parts (coasting of the rocket) 
and the consequent appearance of the Lorentz relation (1.3) are unfortunate, 
for they tend to divert the attention from the accelerated motion, which is 
essential in the clock paradox problem, to the expression (1.3) for uniform 
relative motion. In actual fact, the uniform relative motion parts [B-C, 
E-F, B'-C',  E'-F'  in (1.1) and (1.2)] are non-essential, and one would have 
essentially the same 'paradox' if one does away with these (coasting) parts 
entirely. In the following section, an analysis of the clock problem with, and 
also without, the uniform relative motion parts in (1.1) and (1.2) will be 
carried out to illustrate this point. 

In the literature, attempts have been made to convince one of the 
immediate applicability of the expression (1.3) for the time intervals for the 
whole trip as recorded by S and S' (assuming negligible times for the 
accelerated parts of the motion) by the following argument. Let there be a 
set of triplets instead of a pair of twins. Let C stay home (in an inertial 
frame); let A be moving away in a rocket with velocity v (relative to C). At 
a certain point in space, A meets B who is travelling toward C with velocity 
- v  (relative to C). A and B do not stop; B just sets his clock according to 
that of A. B finally passes by C. It is then claimed that the time recorded by 
C (for the interval between the passing by of A and that of B) is longer than 
that recorded by B, in accordance with (1.3). This argument is a special case 
of a general theorem in the special theory of relativity, namely, that in a 
Minkowski diagram, the time interval measured on a straight line AB 
(which is the time axis) is longer than the sum of time intervals measured 
along a series of straight lines AC, C D , . . .  DB (each being a time axis in 
another Lorentz frame) which together with AB form a polygon. The 
implication of this argument is that we make use of the awareness of the 
accelerations to remove the reciprocal symmetry of the Lorentz frames, but 
have ignored the effects of the accelerations on the time measures of the 
systems. On this argument, one might as well contend with two Lorentz 
flames since the use of a third frame does not add to the resolution of the 
problem. 

2. Arbitrary Motion Relative to an Inertial Frame 

We shall study an accelerated motion that can be treated exactly in the 
clock problem. 

Let (X, T) be the space and time coordinates in an inertial frame S and 
let x, t be those in a flame S '  which may be accelerated under the time- 
independent field. Let v(x, T) be the velocity of a fixed point x in S'  relative 
to S at time T and let X be the space coordinate of the point p so that 
X = X(x, T) and 

v(x, T) = v(x(X, T), T) (2.1) 



312 TA-YOU WU AND Y. C. LEE 

The velocity of the point p in S is 

v =  - ~  x (2.2) 

If  we assume that in S'  the unit of length is the same as that in S, then the 
condition of local Lorentz contraction is expressed by 

(x, r)] (2.3) 

From this, one obtains the equation 

(av(x,r)  r o 1(1-"2 

This is equivalent to 

Ov(X,T)] 1 Ov 
= - -~ v(X, T) ~-T(X, T) (2.5) OX IT 

in which v is regarded as a function of X, Tthrough the transformation (2.1). 
To obtain the relation between the time t and the coordinates X and T, 

we shall introduce the conditions of local Lorentz time dilatation and 
relativity of motion of  S and S' ,  namely, 

"v'(g44) d"r = J ( 1  - v 2  ~-~ (x, T)] d r  (2.6) 

and 
1 

v(x, r )  = ~ x ~-~25.)  ~,~i]x 

where -r is the proper time in S '  in the sense that if the metric in S '  is 
(dy=dz=O) 

dsa = - (  dx2 + dY 2 + dz2) + g44 dt2 (2.8) 

then 

so that 

where 

ds2 -- g44 d'r2 (2.9) 

d~- = ~/(1 - vZ)dt (2.10) 

v2 l ? x ?  = ~ \ff{]x (2.7') 

Note that the -r called the proper time above and defined by (2.9) is not the 
normal proper time "r0 defined by d'r0 = ds which will be related to -r here by 
d r  0 = %/(g44)dT". In the present work, we make use of ~- in the calculation 
of~'o. 
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The conditions (2.3) and (2.6) are valid at a point (X, T) or (x, t). Our 
object is to find a class of accelerated frames S'  (with respect to S) with the 
transformation 

x =  x(X,T) ,  t=  t (X ,T)  (2.11) 

and satisfying (2.3) and (2.6). The hypothesis that a transformation (2.11) 
exists between the (X,T) in an inertial frame and the (x,t) coordinates 
implies that the space is Euclidean. In this case, we can integrate the 
differential equations (2.5) and (2.6) since no curvature of space is involved. 

Equation (2.5) can be solved by the method of separation of variables, 
namely, by setting 

which leads to 
~C 2 T + CI 

/) 
~x+ c2 

If  the initial condition is 

v = ~(X) ~(T) 

then 

, A, CI, C2 being constants. 

v ~ aT at X = 0 as T ~ 0 

aT 
v 1 + (aXle 2) (2.12) 

Putting this into (2.2), one obtains the equation of motion of the point p 
(x = 0 in S'), 

dX aT 
dT - 1 + (aX/c 2) (2.13) 

To obtain the relationship between X and x, we may first integrate (2.13) 
to obtain 

axe2 a2r  2 
1 + c2 ] c2 f(x) (2.14) 

where f (x )  is an arbitrary function of x. On the other hand we can also 
integrate the Lorentz contraction equation (2.3) in which v is given by 
(2.12). The integration yields 

1 + c2 } d d- + b(T) (2.14') 

where b(T) is an arbitrary function of T. However, by comparing the above 
two equations (2.14) and (2.14') we see that b(T) must actually be a pure 
constant b, independent of T, and f (x )  is just [(ax/d) + b] 2. Our initial 
conditions then require b = 1, so that we have 

axe2 ( + = \1 + + (2.15) 1 c2 ] c2 ] 
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From (2.7), (2.13) and (2.15) we obtain 

(aT/c) _ l [dx] aT/c dT 
1 + ( a X / c  2) v "v/(g44) \dt]x "~/(g44) [1 + (ax/c2)] 

From Equations (2.6), (2.7), (2.8) and the assumption that g44 does not 
depend on t, one can show that 

The above equation in dT/dt can be integrated, and with the initial condition 

t = 0 when T = 0 

we obtain 

2atc - I n  l + ~ - + T ) - l n  1+  cZ 

Using (2.15) in (2.17), we obtain 

1 [dx~ aT/c = _  tanhat  
+ [1 + (ax/cZ)] \ ~ ] x  = - ~/{[1 + (aN~c2)] 2 + (aT~e) 2} c 

(2.17) 

and (2.7) becomes 

(2.18) 

dX) aT/c = tanh at (2.18a) 
- ~  x 1 + (aXle 2) c 

In (2.18a), since x is held fixed, t is also the proper time ~- in S'. 
Equations (2.15) and (2.17) now transform the metric 

ds 2 = - d X  2 + dT 2 (2.19) 

into 

ds2 =-dx2 + (l + 7 )2d t  2 (2.20) 

In (2.20), for a given constant a, x is restricted to the region x > -(c2/a). 
It is seen from (2.13) and (2.15) that the limiting value x =-(c2/a)  corre- 
sponds to v = e beyond which v should not pass. 

For convenience, we write three consequences of equations (2.15) and 
(2.17), namely, (a.) aT_  1 + tanh (2.21) 

•f-=(1 ax\ . /at \  
+ ~-) s ' n h t c  ) 

aX ( aX)coshat 1 + ~ - =  1+~- i- c 

(2.22) 

(2.23) 
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Equation (2.15) describes the motion of a fixed point p in S' from the 
standpoint of S. It is the so-called hyperbolic motion. 

Equation (2.23) describes the motion of a fixed point p in S from the 
standpoint of S'. 

If  S' is accelerated along the - X  direction, we have only to replace a in 
all the equations (2.12)-(2.23) b y - a ,  and obtain 

(m C2 C2 ~ (T-- To) 2 (2.24) 

a( T -  T~ - ( a( X - X~ tanh a( t c (2.25) 

a(T -  (1-t a ( X -  X~ sinh a ( t -  a c (2.26) 

1 a(X-c 2 Xo)_ (1 a(x-x~ c to) (2.27) 

where x0, X0, To, to are constants to be determined by the appropriate 
initial conditions. In this case, equations (2.7) and (2.13) become 

dX) a ( T -  To) 
v = d f  x = 1 - (a/c 2) ( X -  Xo) (2.28) 

1 [dx'~ {dX'~ - t a n h a ( t -  to) (2.28a) 
v = - 1 - [ a ( x  - X o ) / e  21 \ T i J x  = \ T T l x  = 

At this point, it is of considerable interest to note that the transformation 
(2.15) and (2.17) are precisely that derived by Moller (1943) on completely 
different considerations. Moller starts from a static metric assumed to be 

ds 2 = - ( d x  2 -~ dy 2 -~ dz 2) + g44 dt 2 (2.8) 

where g44 = g 4 4 ( X )  �9 g44 is determined by the Einstein equations Ru~ = 0, 
which lead to g44 = [1 + (gx/ca)] z, g being a constant. The curvature tensor 
R~w for this metric vanishes, showing the space to be Euclidean. With the 
help of the equations of the geodesic, the transformation (2.15) and (2.17) 
is found. We have arrived at (2.15) and (2.17) on the basis of the local 
Lorentz transformation properties (2.3), (2.6), (2.7) with the assumption 
that in (2.7), g44 is a function o f x  but not of t. 

3. Resolution of the Clock Paradox 

We shall now study the clock problem as stated in (1.1) and (1.2) of 
Section 1, by treating the accelerated parts of the trip A-B, C-D-E, F-A, 
and A'-B', C'-D'-E', F'-A' by means of the accelerated motion described 
by equations (2.9)-(2.24) and (2.25)-(2.28) of the preceding section. 
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(A) From the Standpoint of  S 
Referr ing to the figure in (1.1), let  the origins of  the coord ina te  systems 

S(X) and S'(x) be coincident  a t  T =  t = 0. 

B S' C 
,a i~ �9 , , i ~ , , i  a . 

/ ~ z  vo (3.1) 
S A I ~ D  ~X 

x = o X~ X= X~ 

The rocke t  S ' ( x = 0 )  moves  according  to  (2.9), (2.7), (2.18)-(2.18a), 
(2.21)-(2.23). Pa r t  A-B: F o r  the mo t ion  o f  the po in t  x = 0 (fixed in S ' ) ,  the 
t in (2.18a), (2.22), (2.23) becomes the p rope r  t ime ~0 in S '  (i.e., the t ime 
registered by  one and  the same clock at  x = 0 fixed in S ' ) .  W h e n  x = 0 
reaches the veloci ty vo (relat ive to  S frame) we h a v e t  

t anh  aA 71 = Vo (3.2) 

v0 (3.3) aTl = sinh (a'r 01) = ~/(1 - v02) 

1 
1 + aX1 = cosh(ar01) - V'(1 - Vo 2) (3.4) 

where T1 is t ime, measured  by the synchronised clocks a t t ached  to  S, X~ is 
the  dis tance t raversed by  S '  (x = 0) when it  has reached the veloci ty  v0 
(i.e., the pa r t  A-B). In  the fol lowing,  the subscr ipt  1, 2, 3 . . . .  refer to  the  
par t s  A-B, B-C, C-D, etc. respectively o f  the tr ip.  The same subscr ipts  
1, 2, 3 . . . .  are  also used for  the A'-B', B'-C' ,  C'-D', etc. in the fol lowing 
section f rom the s t andpo in t  o f  S ' .  

To  ob ta in  the t ime interval  A TI recorded  by  one c lock fixed at  X = 0 in S, 
let S' send l ight signals back  to  S. Let  ~- be the p rope r  t ime in S ' .  Then1: 

A-r 1 

AT, = f / [ 1  + V]d.r (3.5) 
~1\1  - v]  

0 

where by (3.2) A'rl = t anh  -1 v0. Thus 

= a [.a/(1 - v02) + ~/(1 - v02) 

t In the following, we simplify writing by choosing the unit of time such that c = 1. All 
time, velocity, acceleration T, t, v, Vo, a are to be replaced by cT, ct, v/c, vo/c, a/c 2, to 
convert to c.g.s, units. 

:~ A T1 only represents the time interval for the clock at X = 0 to intercept all the light 
signals sent to it by the clock attached to x = 0 within A~- I. It does not really represent the 
time of travel of the rocket (x = 0) from A to B as recorded by the clock at X = 0. The sum 
in (3.10) is, however, the total time interval for the whole trip of S' ,  as recorded by one 
and the same clock at X = 0 in S. 
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From the symmetry of the situation, it is clear that for the part C-D, 

AT3 = AT1 (3.6) 

and for the parts D-E, F-A, 

A~-| 

f /[1 AT4= -Vld'c (3.7) 
.J ~1\1 + v/ 
0 

=1[ .  Vo 1 1] 
aLr  - Vo 2) a/(1 - Vo 2) + 

AT6 = AT4 (3.8) 

For the parts B-C, E-F, if At2 = drs  is the proper time intervals in S' ,  the 
sum of the intervals for the arrivals of the signals sent back by S' during 
these intervals is 

/11+ 1 
"lr  + z r '  = "' db + . ,,o/ 

2A~- 2 
- V ' ( 1  - Vo 2) ( 3 . 9 )  

Thus the total interval recorded by one single clock in S (at rest at X = 0) 
from all signals sent back by S'  during its round trip is 

~ A ' v  4 Vo 2A~'2 
" ~ s - -  a V ' ( 1  - Vo z)  + M'(1  Vo z )  

(3.10) 
j = l  

The proper time (recorded by one clock) in S' for the whole round trip is 

Azo = 4ATol + 2A'r2 = 4tanh-1 Vo + 2A~'2 (3.11) 
a 

(B) From the Standpoint of S' 
The fixed point X = 0 in S moves in the negative x direction. 

- - X s  

C' -vo B' 

(3.12) 

Part A'-B'. Let AT1 be the proper time interval (registered by a clock at 
X = 0 in S) for X = 0 to reach the velocity -Vo (relative to S'). From (2.18a), 

aT 1 
aA TI = t a n h - -  = Vo (3.13) 

r 
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and the distance traversed by X = 0 during this interval is given by (2.23) 
(with X = 0) and (2.18) with tanhah = v0, i.e., 

1 
1 + axl - cosh a t ~ l  - X/(1 - v02) (3.14) 

Parts B'-C"  and E'-F ' .  Since the time interval for B ' -C '  or E ' -F '  in S'  is 
Ao-2 in (3.8), S '  would have deduced from the special theory of relativity 
that the combined intervals would have added to the proper time intervals 
of Sthe value 2A T2 which can be calculated as follows. Let dT be an element 
of proper time in S. For  the combined B ' - C '  and E' -F ' ,  light signals sent 
by S back to S '  will reach S'  in interval 

1 + Vo 1 - Vo 
2) 

This is now the time interval recorded by the clock in S' ,  and is hence the 
proper time interval 2Ao-2, i.e., 

2A TE = x/(1 - Vo 2) 2A o-2 (3.15) 

Part C'-D'.  During C'-D'  and D'-E' ,  S '  would describe S as being acted 
on by a gravitational field a in the positive x-direction, the motion being 
described by equations (2.24)-(2.27). Equation (2.24) is 

[1 - a(x - Xo)] 2 = [1 - a ( X -  Xo)] 2 - a Z ( T -  To) z (2.24) 

The constants Xo, Xo, To are determined as follows. From the standpoint of 
Sl [see (3.1), (3.2) and (3.8)], at C, 

v 0 azJ o-2 
a T =  ~/(1 - Vo 2) + ~/(1 - Vo2) ' v = Vo (3.16) 

and (2.28) leads to 

a [~V/(1 1L - To] Vo2) (Vo + aA'r2) 

- 1 + a X o  =Vo 

At D, 

v = 0 and 

[see (3.4)]. These lead to 

2Vo aAo- 2 
T =  + 

~ / ( 1  - -  Vo 2) ~ / ( 1  - -  v02)  ' 

v 0 / [  o- 2 
x =  2x~ 

~ / ( 1  - Vo 2) 

Vo/['7"2 
Xo = 2X~ + 

~ / ( 1  - Vo 2) 

2Vo aAo-2 
aTo ~/(1 - Vo 2) + ~/(1 - Vo 2) (3.17) 

X o = 0 
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F r o m  (2.28a), 
tanh  a( t - to) = - v  

the condit ion v = Vo when t = A'rl + A r  2 leads to 

to = 2Arl  + At2 (3.18) 

Thus,  equat ion (2.25) corresponding to the case (2.24) is now 

( 
a \ T -  %/(1 - Vo 2) %/(1 - Vo2)/ < , %/6m~o2)TJ 

• tanh  (t - 2Ar  I - A~'2) (3.19) 

At  D ' ,  v = t anh ( t  - 2 A t  -- Ar2) = 0 and  the point  X = 0 of  S has the t ime 
T = A Ta,_n,_c,_w 

2Vo AT 2 (3.20) 
A T A , - n , - c , - w  - %/(1 - Vo 2) q %/(1 - Vo 2) 

F r o m  the symmet ry  of  the situation, it is clear that  the t ime in S for  the trip 
A'-17 ' - C ' - D ' - E ' - F ' - A '  as seen (or, calculated) f rom the s tandpoint  o f  S '  is 
twice the A TA,_o, in (3.20), i.e., 

Tota l  t ime A T in S = 

/ 2Vo_ + -Art  ~ (3.21) 2 {a%/(7 v02) %/(1-v02)7 
which can be writ ten 

= 2(A TA_. + A Tn-c + A Tc_o) 

or, 
2Vo aAr2  

a A T  = 2 Vo + a%/(1 - Vo2) ArE + %/(1 - Vo 2) -~ %/(1 - Vo 2) 

- (Vo + aV(1 - Vo 2) Ar2)] (3.22) 

the p roper  t ime in 
S '  = 4/a tanh  - I  v0 + 2A~-2 (3.23) 

Equa t ion  (3.21) shows complete  agreement  with the value given in (3.10) 
obta ined f rom the s tandpoint  o f  S. Equat ion  (3.22) shows that  the ' loss of  
t ime '  during B ' - C '  and E ' - F '  by S in the view of  S '  [i.e., 2%/(1 - v02)A-r2 
in (3.15) compared  with 2ARE/%/(1 - Vo z) in (3.9)] is more  than  made  up by 
the 'gain in t ime'  by the S clock during C ' - D ' ,  D ' - E '  when S is at  a higher 
equivalent  gravi tat ional  potent ial  than  S '  [see (3.12)], and the clock of  S 
is "faster' on account  o f  the factor  g44 = (1 - gx)  2 in 

ds 2 = dx  2 + (1 - gx)2 dt 2 

(with x = 0 at  A'  and a x  = 21%/(1 - Vo 2) - 1] - roar2  at  D') .  The  smaller 
' loss of  t ime'  o f  the clock of  S during A ' - B '  (when S is at a lower gravita- 
tional potential ,  ds 2 = - d x  2 + (1 + gx)2dt  2) is also more  than  made  up by 
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the 'ga in '  dur ing  C'-D' .  The to ta l  result  is to br ing  the two reckonings  of  
the p rope r  t ime intervals,  by  S and S ' ,  o f  the r o u n d  t r ip  into exact agreement  
wi th  each o the r . t  

I t  is seen f rom the foregoing results tha t  all the calculat ions  are exact, and  
no approx ima t ions  involving the assumpt ion  o f  mak ing  the accelerated 
par t s  A-B,  C-D-E ,  F-A  (or  A' -B ' ,  C ' - D ' - E ' ,  F ' -A ' )  very shor t  c o m p a r e d  
with the un i fo rm relat ive mo t ion  pa r t  B=C, E - F  (or  B ' - C ' ,  E ' - F ' )  have 
been made.  In  fact, as emphas ised  by  Einstein as early as in the 1918 p a p e r  
and  b rough t  ou t  app rox ima te ly  by T o l m a n  (1934) and  exact ly in (3.22) 
above  tha t  is precisely the accelerated par t s  tha t  resolve the ' p a r a dox ' .  H a d  
one l i teral ly 'neglected '  the accelerated par ts ,  (3.10) and (3.22) would  have 
become 

2At2 
Tota l  t ime in S (as reckoned  by  S)  

~/ (1  - Vo 2) 

Tota l  t ime in S (as reckoned  by  S ' )  = 2~/(1 - Vo 2) A r  2 

On the o ther  hand,  had  one done  away  entirely wi th  the un i fo rm relat ive 
mo t ion  (coast ing o f  rocket)  par t s  B-C,  E - F  (B ' -C ' ,  E ' -F ' ) ,  the results  
(3.10) and (3.22) would  have become:  

S tandpo in t  o f  S S tandpo in t  o f  S '  

To ta l  p rope r  t ime in S '  

Tota l  p rope r  t ime in S 

4 tanh_ 1 Vo 4 tanh_ ~ Vo 
a a 

] a a / (1  - Vo 2) Vo -~ a / ( f - -  Vo 2) Vo 

t The results (3.10), (3.11), (3.22), (3.23) above are a little more complete than those of 
Moller (1943) in that here S '  starts out from rest and comes back at rest to S. There are 
differences in details between this and Moller's work. For example, we calculate the time 
intervals A TI, A T3, A T4, A T6 in (3.5)-(3.8) as recorded by one clock in S, and not M~ller's 
times T', T" which are not the proper times of one clock. Also, as remarked in Section 2 
above, the starting points in the two works are different. In an application of M~ller's 
work, Fock (1959) has obtained an erroneous conclusion. 

Fock (1959) states that the time intervals recorded by the clocks A, B in S, S" are 
given by 

V 2 
~'A - ~'B = ~ (�89 ~t) 

where t = 2v/g is the time for the turning around part (C-DE in (1.8) in the present 
article), and T = uniformly moving part (B-C) + (E-F) + t. Thus rA - rB can be ~ 0, 
in disagreement with the results of everyone else. This strange result arises from the error 
of the + sign in (62.09), which should have read U = Uo - g(xl - x). When this correction 
is made, one would have 

v 2 T 

which is in agreement with the approximate result of (1.8) of Tolman and others. 
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Here is, of course, exact agreement between the reckonings of the total 
proper time intervals from the standpoints of both frames. 

In the calculations above, we had employed the accelerated motion 
represented by equations (2.15) and (2.17) [or, (2.24) and (2.25)] which 
correspond to motion under a time-independent field. The result, however, 
is in fact quite general since from S' (x ,  t), one can carry out any arbitrary 
coordinate transformation to a frame S",  

x" = x"(x, t), t" = t"(x, t) 

which will lead in general to 

ds 2 = ~. glj dxi" dxj" 

where the g~i are functions of x" and t" and hence no longer static. The 
space is, however, Euclidean. The motions of S" relative to S can be quite 
arbitrary and very complicated, but the description can be reduced to that 
of S' by the transformation above so that in a sense the treatment of the 
clock problem by means of S' has covered a whole (infinite number) class 
of accelerated motions relative to S. This class of accelerated motions has 
not brought in any curved space properties in the sense of Einstein's general 
theory of relativity. 

The present work has thus treated and resolved the clock problem 
without having really made recourse to Einstein's theory of gravitation 
involving curved space. This is worth noting in view of the usual statement 
in the literature that an exact treatment of the clock problem (i.e., to all 
orders of Vo/C) calls for the general theory of relativity. 

4. General Remarks on the "Clock Paradox' Problem 

We are now in a position to summarise what we believe is relevant in the 
clock problem in the relativity theory. 

(1) Invariance of proper time under coordinate transformations. In the 
theory of relativity (special and general), 

ds2 = g~v dx~ dxv (4.1) 
= invariant 

in each group of coordinate transformations (the group in flat space-time 
which includes the Lorentz group, and the general group in curved space- 
time). Thus for a given world line C between two world points P1 and P2, the 
proper time interval 

AT ds along C = invariant (4.2) 
t'1 

i.e., has the same value in all frames satisfying (4.1) 
(2) Proper time intervals between two world-points along different 

world lines. 
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Consider a given field gv~ = gv~ (xl, x2, x3, x4). The motion of a particle 
from one world point P1 to another P2 is uniquely given by the geodesic C 

2 

3 f ds=O 
1 

Other paths C~, C2 joining P1 and P2 will not correspond to the 'free' motion 
in the field g.v, but will correspond to motions under agencies other than 
the field representative by g~, and 

2 2 

f f,t  (4.3) 
1C 1 1C 

which follows from the definition of the geodesic. 
(3) For a given field g~, between two arbitrarily given points Pl and P2, 

there is one and only one geodesic. 
From a point P~, there are o03 geodesics issuing in all directions. Of these, 

one, say C, goes through P2. Suppose another, say C~, makes an angle 0 with 
C at P~. Since a geodesic is a line generated by an infinitesimal vector in a 
continuous series of infinitesimal parallel displacements, and since the 
angle between two vectors is invariant under parallel displacements, it 
follows that in general two geodesics from a given point P~ cannot intersect 
at another arbitrarily chosen point P2. (In the case of a spherical surface, 
geodesics from a point P intersect at the antipode of P only.) 

(4) The clock paradox. Let S and S' be two (material) frames whose 
coordinates transform according to (4.1). Let us follow Einstein's argument 
in Section 1, namely, from the standpoint of S' (the rocket), S undergoes a 
series of free falls in certain universal gravitation fields during A'B', C'D', 
D'E', F'A' and coasting B'C', E'E' in (1.2). Suppose these fields are 
represented by a field g~. From the standpoint S', the frame S passes from 
the initial point P~ to P2 (in 4-space) along the geodesic ofg~v, but S' itself 
passes from P~ to P2 along a pure-time trajectory since S' has been held 
fixed (at rest) by means of some external agency. Thus the world line of S' 
is not a geodesic of g~. In general, the proper time intervals along the two 
world lines between P1 and Pz are different, according to (4.3). 

The above result is general, holding for curved space as well as for flat 
space. It is possible to make an explicit and exact calculation of the proper 
time intervals in the fiat space case, using the spirit of the general theory of 
relativity (acceleration represented by a g~,~ field). This has been done by 
Moller (1943), and in the present work (Sections 2 and 3). 

(5) Let S(X, Y,Z, T) be a strictly inertial frame, i.e., frame in flat space- 
time, and S'(x,y,z, t) be a frame in a curved space-time (i.e., in a gravita- 
tional field in Einstein's theory). Then there is no coordinate transformation 
which transforms ds 2 = - ( d x  2 -4- d Y  2 -k d Z  2) -k dT 2 into ds 2 = ~ g~dxudx~ 
with the curvature tensor Rava r 0. In this case there is no invariant ds 2 and 
there is no exact (only approximate) connection between the space-time 



THE CLOCK PARADOX IN THE RELATIVITY THEORY 323 

descr ip t ion  in S and tha t  in S ' .  One can no longer  compare  &'o in S and  the 
d'r 0 in S ' ,  and  the M o c k  p a r a d o x '  does not  have any d e a r  and  exact  meaning.  
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